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ABSTRACT

Correlations in the failures of subsystems or components may arise

when they share a common, random environment. We show that a natural

tool for calculating the reliability of such systems is the characteristic

functional of the random hazard rate, h(t). Some general results for the

reliability of series and parallel systems in terms of the characteristic

functional of the hazard rate are derived and applied to a number of

models of random environments. The applications include random hazard

functions arising from 1) non-fatal shocks of random amplitudes, 2) a

Narkovian, Gamma-marginal stochastic process, 3) system stress related

to un-repaired damage from incoming rounds, and 4) impulsive and

accumulated neat stresses from a laser battle.

INTRODUCTION

• onsider a system whose components are subject to a random

cnvironrment i , possibly including random shocks. In general, the ith

component hazard rate, h(t), may be written as the sum of 'Ivy p.arts.

0The first (deterrmnistlc) Dart. X (t), accounts for wearout and those

r3ndom fa'iures which occur independently for each component. The

zecond (stochastic) part, gi(t), arises from those environmental

conditions wnich are shared by two or more components in the system.



We develop a general formalism for calculating the reliability of a

system in a random environment in terms of the characteristic

functional of the hazard rate. Various models of random environments

are then proposed and the corresponding expressions for the

characteristic functionals are calculated. The reliability of systems in

such environments are then found using these characteristic functionals.

The equivalent, deterministic hazard functions for single components in

some of these models are found not to be constant in time2.

In Section I1 the general formalism is introduced and illustrated for a

single component subject to an environment which includes non-fatal

shocks with random amplitudes. In Sections III and IV the reliability of

series and parallel systems is presented in general terms and applied to

the non-fatal shock model. Section V presents a model for the hazard

rate as a Markovian, Gamma-marginal stochastic process. Finally, in

Sectio:n V we present three models in which the failure rate is

pru)portional to system stress. Each of these models can be applied to

muIt;-component systems using the methods developed in the earlier

5ec t i ons.

One Component

The simplesL case is that of one component with hazard rate h(t), a

ror-negat;ve stochastic process. The reliability of the component,

subject to a particular realization of the environment (hence, h(t) ) is

iJef ined as,

Pr[T .tl, (1)

2



where T is the random variable (r.v.) equal to the time the component

fails and the subscript denotes a particular realization of the stochastic

process. M. Using the usual definition or the hazard rate3, this is,

t

Rh = exp -Jh(t')dt' 1. (2)

0

Hence, averaging over the random environments we have,

t

R(t) Eh[ Rh I = Ef exp[ -fh(t')dt' ] ) (3)

0

or,

R(t) ChTr()I I4)()=i
,where,

t

¢nt[l()] : E{ exp[ if 11(t') h(t')dt' ] ,(5)

0

defines the characteristic functional 4 5 of the hazard rate. In other

words, this characteristic functional, evaluated for a particular value of

the test function, Tl(t), yields directly the reliability of a component.

We will see below how this generalizes to multi-component systems in a

random environment.

We can write the reliability of a component or system in terms of an

effective, deterministic hazard rate, r(t), using the usual definition of

3



hazard rate,

6(t) = -d/dt In { R(t)},

but we must remember not to use this "hazard rate" to calculate

reliability of larger aggregations, unless such aggregations are composed

of components or subsystems not sharing a common, random environment.

Deterministic hazard rate plus random shocks

If the environment gives rise to non-fatal random shocks with rate 6(t),

then the hazard rate may be represented by a deterministic function,

X(t). plus delta function spikes, possibly with random amplitudes. For

convenience we will sometimes replace X(t) or 6(t) with constants.

However, in all the reliability formulas derived here, Xt can always be

replaced with f{X(t')dt' for non-constant background hazard rate, and 2t

can be replaced with fa(t')dt' for a non-homogeneous shock process.

Note that \(t) may be really an effective hazard rate, obtained from the

preceding equation, when one portion of the random hazard rate is unique

to each individual component, i.e. not shared among separate components.

The hazard rate for non-fatal shocks occurring at times tj is,

n

h(t') X SW (t'd-t), (6)

4
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t

wniere the pdf of the tj is '(t)/n , n = J(tWdt'. and n is a

0

Poisson r.v. with mean n.

The characteristic functional of this process, derived in Appendix A, is,

t t

expfi iX fil (t')dt' f~(~ [C~x( Ti (t') I ] at'). (7)

0 0

where Cis the ordinary characteristic function of the shock

amplitudes, X Y in particular, if the shock amplitudes have an

exponential distribution (parameter 6) then,

C () &/ - 1 (8)

and,

t t

Ch~t1TI''I =i exp{ ix fTl(t,)dt' + ifJ') I(t')/[8 - rlI t') t. (9)

0 0

Hen)ce, setting TI(t) =i, the reliability is,

W~t) = exp{ -Xt - n /[& + 1] (10)

or. assuming a stationary environment (26 = const.) and using K 1/6,

R(t) 0< -t-tc/[0( +1) (0

5



The effective hazard rate, I(t), is constant for this model. Note that as

1o -> 00 the rate of failure becomes X plus the rate, ', of occurrence of

(fatal) shocks (in fact, X could be a background rate of infinitely high

shocks).

111. Two different components in the same environment

If two or more components are in different, independent environments

the system reliability follows from the usual formulas 3 expressed in

terms of the individual reliabilities. We consider here two different

components seeing the same environment. The reliability of two

components in series subject to a given realization of the environmental

conditions is.

Rh(t) = Ph[T > ti = Rh1(t) • Rh2(t). (12)

If the components are in a parallel, redundant system the reliability is,

Rh(t) I - II - Rh1(t0) . I - Rh2(t)] (13)

= exp[ -fh1(t')dt' I + exp[ -Jh2(t')dt' - exp -fr[h 1(t') + h2(t')] dt' 1,

where all integrals are 0 -> t. Hence, averaging over realizations of the

environment wa have, using the definition of the characteristic

functional,

R(t) (14)

Cht[Tl( ) I I - Ch, t [T i() i - Ch1+h2 ,t[TI()] I(10,

Clearly, the last term also represents the reliability of a series circuit

_ 6



w ith the same two components. In the f ol low ing it w I Il be understood

that all characteristic functionals are for the processes over the

:ntervat (0, t].

As an example, consider two components in series, seeing the same

shocks, but experiencing different amplitudes, o(, k ; where o< and are

I .i.d. exponential r.v's. Then h, + h2 Is given by

n

h(t') =' X +-X + Z((x + k ~ 6(t' - ti) (15)

In this case CXin Eq. (7) is replaced by the characteristic function of

thie sum or two exponentials,

CO(' /&- liw) 8/[86 - iwk1, (6

and X 'is replaced by X, + X2, yielding,

t

Ch1,+h21rl(-)l exp{ i(X1+~X2)frr(t')Clt (17)

0
t

exp( f2'(t')dt'[ &/18 - iil(t')] - /[18 - i-rI(t')kI - 11 1.
0

Th'e rellabilit of the series system is then found by substituting

= :," yielding,

Rseries(t) =exp{ -(X1 +X2)t - 6't[I1 - 82/[(S + 1I)(& k)1}. ()

The parallel system reliability is given by,

7



R11(t) =RIMt + R2(t) - Rseries(t). (19)

where R1,2 are the same as Eq. 010) with 8 replaced with 8 and 6/k,

respectively.

If cK in the above, i.e. the amplitude of shocks seen by the two

components are proportional, then we have,

n

h )+ NW() =X 1 + X2 +(V+k) Z K ~(C - t1) (20)

This is the same as for a single component, except X0  X, + X2 and

&A 1> +/k). hence,

t

Ch1+h[TIr(.)l = exp{ ( X)rlt)t (21)

0
t

exp{ f,5(t')dt'[ 8/[8 - iTj(t') (k+ 1)] - 1I)

0

and the reliability of a series circuit 'is,

Rseries(') =exp{ - (XI + X2)t -~t[k /8k ) .(2

The rel iabi Ity of a paral lel circuit is again given by Eq. (19).

NV. rn-Identical com~onents

For m components in series, subject to a given realization of the

environment, the reliability is,

All' A



Rh(t) = Rh(t) Rh2(t) Rh3(t)...

t

= exp{-(hi +. (h hm)dt' 1. (23)

0

Hence, averaging over the environment, the reliability is,

R(t) = Chl+hz+...[!(-)]T- ,(.) : . (24)

a) If all components respond to a given shock with independent

amplitudes we obtain,

Ra(t) = exp{ -mXot + 3't [&M/(&+ I )m - 1] }, (25)

b) if the hazard rate is exactly the same for all components,

Rb(t) exp( -mXot + 6t (8/(S*m) -II). (26)

The effective hazard rate, li(t), is again constant. Note that

(II/&) M = I +m/S

hence,

0+ 1/8) m > I + M/8'

!)r,

8m/(&+ 1 )m < 8/(S m),

wn'cr implies that Ra < Rb. In other words, as expected, the reliability

of a series system is higher in the more highly correlated environment.

Also, using Eq. (19), it is clear that the reliability of a parallel system

will De lower in a more h!ghly correlated environment.

9



m- Identical components in parallel

The reliaDbility of m-identical components in a parallel redundant system

subject to a given realization of the environment is,

m t

Rh(t) I - TT[ 1 - exp{-f hI(t')dt' 1. (27)

]=I 0

This can be expanded using binomial coefficients, Cm , as,

m

Rh(t) = 1 - Cm1  j RhI(t)...Rhj(t). (28)

1=0

Hence, averaging over the environment, we have,

m

R(t) I- . (-Cm e- ot exp{ 2R [8J/(8 1) - I } (29)

1=0

for independent response to the shocks, and,

m

R(t) z1 - Z (-)j Cm, e-lxOt exp{ 2t [8/(8-J) - 1i), (30)

1=0

if there Is exactly the same hazard rate for all components (each

component sees exactly the same amplitude shocks).

In general, for m identical components in parallel, all with the same

hazard rate, h(t) = Xo(t) + g(t) (where g(t) is random),

10



m

RCt) = 1 - _ ( -) j .m exp{ -J?,(t')dt} Cg[i(.)I n(.)j., (31)
j=0

From the foregoing it is clear how to generalize the formulas for

reliability in a random environment to more general configurations

containing components both in series and in parallel:

I) using the usual rules for probabilities, write the reliability of the

system in terms of the individual component hazard processes,

conditioned on a given realization of the environment, hence of the

(h,(t)} (cf. Eq. 27),

2) average over the environment, hence over the {hi(t)}.

3) express the resuit in terms of the appropriate characteristic

;ur -tionals (cf. Eq. 3 1), and finally,

4i obtain the effective component or system hazard rate, 6(t).

v. Exponent ial/Gamma Hazard rate

,-"nstder an environment giving rise to a Markov hazard rate process with

GCamma marginal 1'6,7 distribution which is common to all components

.rq the system of interest. We show in Appendix B that the

character ist:c functional for such a process is,

t t t"

'_g7(-! =exp{o Idt' ~6t)[ / -idt"71(t")exp(-j'(')d )1- I 1B. (32)

0 t

11



The correlation function for this process in the stationary case

(Z const.) is p e- "'. When u= I the process is exponential.

The reliability of a single component with hazard rate h(t) =X(t) + g(t)

is then,

R(t) = exp( -f X(t')dt'} Cg[ T1(.)I1 (=, (33)

carrying out the resulting integrations yields,

R(t) = (34)

exp( -J'dt')dt -o]'t/( 8+ 1)1 { 8/( '+ 1 - e- t)}) ( 1 +2 )/(' S  1)

The effective hazard rate, h(t), is clearly not constant for this model.

This can be generalized to multi-component systems with the methods

from the previous sections. For example, the reliability of m identical

cornponents in series is obtained by replacing X -> m)X and using

TI) = m-i in the characteristic functional. From Eq. (32) it is easily

seen that this leads to replacing 8 with S/m in Eq. (34).

VT. Failure Rate Proportional to Sustem 5tress

_ h':s section we will consider three related models of hazard rate

processes. In the first model we assume the rate of failure is

proportional to the number of customers using the system, for example

the rate of wear on a highway may have a component which is

proportional to the number of automobiles, N(t), using the highway. In

the second model the failure rate of a major system (for example on a

battleship during combat) is increased proportional to the amount of

12



un-repaired damage (the number of hits not repaired is N(t). the amount

of damage/hit is some positive r.v.). Both of these models are related

to a generalized M/G/oo queue. Finally, we model the reliability of

electronic systems in a laser battle scenario. Failures may be caused by

impulsive stress caused by a laser hit, or by accumulated heat from the

laser hits. It is found that none of the models in this section lead to a

constant effective hazard rate.

Highway model

Consider a large multi-lane highway in which the traffic level is such

that cars do not interfere with each other. The number of cars on the

highway can be modeled as an Ml/G/oo queue. The rate of arrivals of cars

to the highway is 6(t) and the pdf of the time spent on the highway

section of interest is b(z) (the "service" distribution). The hazard rate

is modelled as h(t) = X(t) + N(t). We show in Appendix C that the

characteristic functional of the hazard rate can be written as,

t

Ch[l(.) = exp{ -JX(t')ij(t')dt'} (35)

0
t 00

exp( f'(t')dt'[ i1 - f d tb(r)exp[i f r1(S)dS] I I.

0 0 tI

For example, when the transit time is exponentially distributed,

parameter pi, the reliability can be evaluated as,

R(t) = e" 'Xt exp{ -' Dt(p+D) + 6D1(p+$)2 [I - e(JI t )t ] 1. (36)

, I I I I - I " I I ' - " I '" I ir r,'3 '



And when the transit time is equal to z with probability one, the

reliability is,

R(t) = e -Xt exp{ -?t - ZI/ • [I - e - rj - (t-z)e-t}, (37)

when t > r. and

R(t) = e -Xt exp{ -Zt - VI • I - e-,Btj , (38)

when t < r. These formulas generalize as shown above for components

in series and/or parallel systems.

Battle Damage Model

Assume that incoming rounds hit a ship according to a non-homogeneous

Poisson process, rate W(t), during a battle. The amount of damage to the

ship per round (or, really, the increased system stress resulting from

each hit) is given by a random variable, , with some non-negative

distribution. Let the pdf of the time to repair the damage from each hit

be b(r). If the failure rate of the total system contains a term which

increases proportional to the amount of un-repaired damage (possibly

because of increased demands made on the rest of the system), then the

-azara rate is,

n

h(t) = X(t) + k Z. $ j {e(t - t)- O(t - tj-). (39)

I=l

The stochastic portion of this corresponds, for example, to the total

weight of customers in a non-homogeneous M/G/oo queue, where each

14



customer has a random weight, i. In Appendix C we derive the

characteristic functional for this process. Applying that result we have,

in general.

t t'V

R(t) = e-Xt exp( -JdtZ(t') [I - C (fST(s)ds)b(v)d' 1 (40)

0 t'

where Co is the ordinary characteristic function of . If A is a constant

this reduces to the previous model. Again, for m components in series

replace X with mX and evaluate the characteristic functional for

Ti(.) = m.i. For parallel configurations Eq. (C4) can be used in

conjunction with Eq. (31).

One example that can be worked out in closed form is when , is an

exponential random variable, parameter E, and the system cannot be

repaired during the battle, i.e. b(z) = S(r - oo). The reliability of a

single component is easily calculated using Eq. (40) to be,

R(t) = e-(2' X)t • ( (e + t)/ )f', (41)

and for m identical components in series we obtain,

R(t) = e- (2fmX)t • (E + mt)/E })E/m. (42)

Laser-Battle Model

We now model the failures of electronic systems in a laser battle as,

1) immediate failures resulting from impulsive thermal or kinetic

shocks, or 2) random failures brought about by the accumulated thermal

15



stress from repeated hits by laser beams. The background hazard rate is

again represented by X(t). Assuming an exponential cooling law, the

hazard rate resulting from laser hits at times (tj} is,

n

h(t) = X(t) + . (o (t-tj) * , O(t - tj) e-K(t-tj) (43)
i=l

where the second term represents the contribution to AT (increase in

the system temperature) resulting from the laser strike at time tj.

Using the same methods as in the Appendices it can be shown that the.

characteristic functional for the stochastic part of this process is,

t t

C[I.] = exp(f dt'(t') [ exp[f ds 11(s) r(s - t') - 1 }, (44)

0

where,

r(s - t') o 8(s-t') + .B O(s - t') e -K(st). (45)

Hence, the reliability is,

R(t) = e- X t exp{fdt'*'(t') [ exp[ -o< - ,/IK-I - e-x(t - t') )] - )I }. (46)

For m identical components in series, seeing exactly the same

environment, Eq. (44) is modified by multiplying X, o< and , by m. The

non-constant effective hazard rate, I(t), can be read directly from

Eq. (46), e.g. for m identical components in series it is,

16



i(t) = m(t) + 1(t) { exp[ -moe - ms/K (I - e-X<(t - t ' ) )I- 1. (46)

Note that Z is not multiplied by m. All components see exactly the same

shocks from laser strikes.

More generally, we could model different types of laser weapons, ranges,

atmospheric propagation, etc. by taking o< and as (correlated) random

variables. The above equations can also be generalized if the

components are not identical but have different vulnerabilities, thermal

conductivities, etc.

VIL Conclusion

We have presented a general formalism for calculating the reliability of

multi--component systems subject to a random environment. The

correlation in failures of different components can be accounted for by

calculating the system reliability in terms of appropriate combinations

of the characteristic functional of the random hazard rate, evaluated for

' H) = i* j (j=I, n; i =v'(-I)}. We have shown how the method may be

used in different circumstances by applying it to a number of different

models for the random environment. Our results include non-constant

effective hazard rates for some of the random environment models. The

intuitively reasonable result that the reliability of series (parallel)

systems is greater (less) in a correlated environment than when the

components see independent environments has been demonstrated for

some of our models. Although we have only considered series or parallel

systems, the application to more complicated systems containing

components both in series an in parallel is straightforward.

17
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Footnotes

1. The notion of random variability of the environment is introduced in

D. P. Gaver, Jr. "Random Hazard in Reliability Problems",

Technometrics 5, No. 2, pp. 211-226 (1963). The processes

considered there have independent increments (e.g. the Gamma

increments on p. 215), hence they yield a constant effective

hazard rate and exponential lifetime distribution.

2. . Mercer explores a model of wear-dependent failure rates that

leads to a non-constant hazard rate in "Some Simple Wear-dependent

Renewal Processes", J. Royal Stat. Soc. (B) 23, pp. 368-376 (1961).

3. See for example, R. E. Barlow and F. Proschan, Statistical Theoru of

eliabilitu and Life Testing. (To Begin With Press, Silver Spring, MD)

1981.

4. M. S. Bartlett, An Introduction to Stochastic Processes. 2nd edition,

(Cambridge University Press) 1966.

5. D. R. Cox and V. Isham, Point Processes, (Cambridge University Press)

1980.
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6. E. Rockower, "The Gamma/Exponential Markov Process", NPS T.R. 1986

7. 5. Ross, Stochastic Processes. (Wiley, New York) 1983, p. 212ff.

8. The idealized model of a textile yarn discussed in, D. R. Cox and H. D.

Miller, The Theory of Stochastic Processes. (Wiley, New York) 1965,

p. 366 ff., can be seen to be equivalent to the M/G/oo queue.

ADpendix A. Derivation of the Characteristic Functional for Impulses

We now derive the characteristic functional for the hazard rate resulting

from random delta function impulses. Unless otherwise noted, we define

the characteristic functional for the process over the interval 0 -> t.

First, the random part of the hazard rate, g(t), is defined more explicitly

as,

n

g(t') I C. oj 8(t' - tj), (A1I)

j=l

where n has a non-homogeneous Poisson distribution, Pn, with mean,

t
n f Z" (t)dit, (A2)

0

the t I nave pd given by a(t')/ n (as is appropriate for a

19



non-homogeneous Poisson process), and o<j have an arbitrary distribution,

f(oxi), with ordinary characteristic function, Co<. The characteristic

functional for g(t') is,

t

Cg[T()] = E{ exp[ ifrl(t) g(t) dt] }, (A3)

0

or, 00 n

- > P~~~ P IT[ fJdtj '6(tj)/n doxj f(o1) ei o(j ql(tj) 1)}

n=O J=1

where the integration over t* is 0 -> t the integration over cj is 0 -> oo.

We have made use of the Dirac delta function to perform the integration

over t'. The product over j now reduces simply to the expression in the

square brackets raised to the nth power because of the independence of

each term in the shot noise-like process. Performing the average over n

(yielding the standard result for the generating function of a Poisson

distribution) and the integration over oj (yielding the characteristic

function for the amplitude distribution) and taking the limit T -- > co,

results in,

t t

Ch,t[(.) = exp{ iXO)Jq(t')dt' + JZ(t') [Co( 11(t')) - 1]dt'}, (A4)

0 0

where we have included the (independent) characteristic functional for

the deterministic portion of the hazard rate.
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Appendix B. The Characteristic Functional of the Gamma Process 6

Using the results of Appendix A, Eq. (A4), the characteristic functional

of random delta function impulses (rate -wd(t) ) with exponential

amplitudes (parameter 6). is,

00

C = exp f J dt u'6(t) ql(t) / [6 - i-q(t) ]). (B1)

-00

If this shot noise is fed into a first-order linear filter (decay parameter

a(t) ), the resulting process, x, satisfies,

x - 6x = g. (B2)

Now, to find the characteristic functional for the process, x(t), subject

to the initial condition, x(O) = xo, use the solution of the stochastic

differential equation, (letting ' be constant to make it easier to follow

the derivation) in the definition,

00

E(x[Tl(')] E I exp[ ifr'1(t) x(t) dft }, (63)

0

or,
:exD[ixofdt n~te-'t] •- exp(iSdt rl(t)e--"ftdt'e-2t' o(t-t') g(t') }

where we rave used the properties of the Heaviside unit step function,

O(t-t'), so that all the integrations are over 0 -> oo, thus making it

easier to interchange the order of integration to give,
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Cx[ ()] :(84)

exp[ xodt Tj(t)e-'t] - expfifdt ' g(t') [dte- t - t t-t) t }.

The second exponential term is now of exactly the same form as the

characteristic functional for g(t), with the expression in square brackets

replacing Tj(t'). Hence, making use of Eq. (B1) we have,

00

Cx[ n(.)] = exp~ixof'dt ij(t)e- t ]  (135)

0
00 00 00

04)tl t0(X

exp (if dt' u " [ffdt e- (tt) 1(t)1 / (8 - i (Jdte-(t-tTl(t)] ,
0 t, t,

where we have used the properties of the step function.

To determine the marginal distribution of this process use

T(t) = "10 8(t-t 0 ), which recovers the ordinary characteristic function

for x(t0 ). A straightforward calculation yields,

4to'iLlo] =exp[iloxOe-'to] ([ - iTt0 e-'6t0] / [ - iTo] P. (86)

This is the characteristic function of a r.v. that, with probability

-25t - W has the value x0e , and with probability (1-o<) is the sum of

xoe - t and a r.v. with exponential distribution of parameter S.

Now. taking to -- > 0 Eq. (66) yields the marginal distribution of the
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steady state process,

Cx(oo)[TIo] = I/ is - i ,Io . (B7)

,.e. the characteristic function of a Gamma distribution, as promised.

Appendix C. The Characteristic Functional of an rl/G/oo Queue, and

Extens ions

The MG/oo queue may be modeled as shot noise impulses of unit

magnitude8 ("customers" arrive with rate a(t). n is again Poisson ),

n

g(t) 8(t - td), (CO

which have been filtered through a linear system with a random response

unctior given by,

r(t -t ) = e(t -tj) - E)(t -tj -t V. (C2)

i.e. a unit height pulse with random duration, r I (the random "service"

time). Hence, for 1 = , the number in the system at time t is,

n

N(t) = ( 1 e(t - tJ) - e(t - ti - p}. (C3)

j=1

We have included the factor, #1 so that we can allow the system
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response to also have a random height, corresponding to a random weight

(or camage, system stress, pollution, etc.) of each customer. Using the

definition of the characteristic functional and following the same steps

as in the previous Appendices. we obtain,

00 n 00

T [ { f f tdt1 (t )/ndS f( 1 ) dtb(-1j)exp[i j fdsq,(s) 8(s.t jt) },

n=O j= o

where e(s,t Jt) V e(t - t) - e(t - t] -j). Again using the

independence of each term in the product, and the fact that they are all

the same, we can perform the summation over Pn (Poisson), and the

average over (obtaining the ordinary characteristic function, C ).

Finally, the characteristic functional may be written,

t t'+t+

exp( -Jdt'-6(t') [1 - C (Jn(s)ds)b(z)df t }. (C4)

0 t
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